Code: EC7T1

IV B. Tech - I Semester - Regular Examinations - November 2015

OPTICAL COMMUNICATIONS (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours Max. Marks: 70
Answer any **FIVE** questions. All questions carry equal marks

- 1 a) Draw the general system diagram for optical communication system and describe the purpose of each component.7 M
 - b) Write the applications of optical communications. 7 M
- 2 a) Write about different types of fibers used in optical communications in terms of refractive index profile, cross sections and dimensions.7 M
 - b) Derive wave equation for single mode fibre. 7 M
- 3 a) Calculate the number of modes at 820 nm in a graded index fiber having a parabolic index profile 1.90, of a 25 μ meters core radius, n₁ = 1.48 and n₂ = 1.46. How does it compare to a step index fiber?
 7 M
 - b) Explain linear scattering loss in detail. 7 M

- 4 a) Derive the expression for wave guide dispersion and obtain the relation between V and β. 7 M
 - b) What are requirements of a good connector? Derive the expression for connector return loss in single mode fiber.

7·M

- 5 a) Explain internal quantum efficiency and internal power generate in LED with suitable expressions. 7 M
 - b) Write short notes on light source material and give the expression for peak emission wavelength. 7 M
- 6 a) Explain with neat diagram avalanche photo diode principle of operation. Derive the expression for multiplication M and responsively of avalanche photo diode.

 7 M
 - b) For a wavelength range 1300 nm $< \lambda <$ 1600 nm, the quantum efficiency for InGaAs is around 90 percent. Find responsivity at wave lengths mentioned above.

7 M

7 a) Explain digital receiver performance of an optical fibre system. 7 M

b) Discuss the digital system planning considerations

7 M

- 8 a) With a neat sketch explain how attenuation in a fiber are measured using cut back methods.

 7 M
 - b) Explain how to measure frequency domain intermodal dispersion.

 7 M